
N89-16358

VERIFYING PERFORIUWCR REQUIRKKKHTS

BY
Dr. Joseph Cross
Sperry Corporation

St. Paul, MN
(612) 456-7316

INTRODUCZCION

The thesis presented in this paper is that today, it is in
general impossible to verify that the performance requirements on
a software program will be met. A n approach to a partial
solution to this problem is presented.

The next section of this paper, Problem Definition, defines
the problem to be addressed, and defines related terms as they
are used below.

The following section, Obstacles to Verifying Performance
Requirements, presents the reasons why performance requirements
are, today, difficult to verify.

The section on Methods for Verifying Performance Requirements
briefly presents methods in use today, and proposes an
alternative approach to overcome some of the remaining
difficulties.

P R O B W DEFINITION

A "performance requirement" is a requirement on the speed of a
function performed by software. Much of the following applies
equally well to requirements on the amount of memory used by a
software function. An example of a performance requirement is
"The interval between updates to each track shall be on the
average at most two seconds, and in no case longer than five
seconds." Note that while performance requirements are, at the
user level, generally stated in elapsed time, these requirements
may be recast at lower levels of design into units of processor
utilization.

"Verifying" a specific requirement on a specific software
development work product refers to determining whether that
requirement is fulfilled by that work product. The requirements
on the work products of each phase of software development are
results of the preceding phase, except for the system
requirements, which are input to the entire software development
process. A work product WP is said to satisfy a requirement R if

system produced according to the requirements set forth in WP

F.3.1.1

(and its sibling work products, if any) will meet the requirement
R. Verifying a software development work product in its entirety
also entails checking its completeness, consistency, feasibility,
and testability [11.

For example, to verify that a detailed design satisfies a
requirement, such as the example requirement above, is to
determine whether any system produced in accord with that
detailed design could fail to exhibit the required behavior.
Moreover, verifying the entire detailed design requires
determining whether there is at least one system that can be
built in accord with that detailed design.

Of course, what work products are produced and what are the
phases of software development depend on the approach to software
development in use. In the conventional approach, the phases are
requirements analysis, design (often subdivided into high-level
design and detailed design). and implementation; the work
products of which are a requirements specification, a design
document (or documents), and code, respectively. In the
operational approach to software development, the first phase
produces a prototype/executable specification, which is intended
to satisfyldefine all requirements except performance
requirements; then a second phase transforms that
prototype/executable specification into a program with the same
behavior except that the performance requirements are met [2].

In order to minimize the dependence of the following
discussion on the approach to software development in use, it
will be assumed below that the work product on which performance
requirements are to be verified is a body of compiled but
untested Ada (tm) code. (Ada is a registered trademark of the
U.S. Government, Ada Joint Program Office.) This body of code
could represent a detailed design in the conventional approach,
or an intermediate step in the transformation of a
prototype/executable specification in the operational approach.

In order to make the issues involved in the verification of
performance requirements as simple as possible, it will be
assumed that a target machine is given and fixed throughout the
discussion. Here "target machine" refers to the virtual machine
on which compiled code is to run: one or more processors,
memories, communication channels, together with run-time support
software such as operating systems. This target machine is
assumed to be the target of a valid implementation of the Ada
language.

Note that while the assumption of a single, known, target
machine is reasonable in the Space Station environment, it is not
reasonable in other environments in which the target machines
that will execute the software may be unknown. We are fortunate
in this regard. I

The term "mapping" will be used to refer to the association
between design-level objects and run-time objects. For example,
a subprogram may be mapped onto a segment of memory-resident
machine code, or it may be mapped into many similar segments of

~ F. 3.1.. 2

machine code (as it would be if it were inlined), or it may be
mapped into nothing (as may be the case for type conversion
functions). As another example, a data object may be mapped into
a location in the main memory of one computer, into a register of
one computer, or into several locations in several computers (as
would be the case if redundant data were being maintained).

The function of mapping a program is generally distributed
among the compiler, linker, loader, and run-time system.

Note that one of the goals of the Ada language design was to
include in the source code all details of the program that define
its semantics, except f o r pe rformance iss ues. That is, by
examination of only the source code of an Ada program, without
considering other information such as linker directives, it is
possible to determine (within limits) its behavior as an
input-output process: however, it is not possible to determine
its timing. For this reason, it is necessary to use additional
information, above and beyond the source code, to verify
performance requirements.

OBSTACLES To VERIFYING PERFORMANCE REQUIREMENTS

This section describes several reasons why verification of
performance requirements is not a straightforward task, even
given a design that has been carried to the level of compiled Ada
code, and a well-defined target machine.

UNSPECIFIED MAPPING ONTO THE TARGET

Perhaps the major obstacle to verifying performance
requirements on a design presented as Ada code is that lack of
information concerning the mapping of the program onto the target
machine. It is only in the mapping information that
performance-critical issues such as the following are dealt with:

* Optimizations. These include low-level optimizations
such as dead code detection and constraint check
elimination, and high-level optimizations such as
subprogram inlining and monitor task optimizations.

* Target resource allocation. This includes the
assignment of tasks to processors (whether the
assignment is static or dynamic), the allocation of
data to memory (registers or main memory, resident or
non-resident, and arrangement into memory banks or
pages), and backup and casualty configurations.

* Implementation dependencies. These include all the
implementation dependencies allowed by the Ada
language definition, such as the number of task
priorities, task scheduling algorithm within a
priority, and interrupt handling methods.

F.3.1.3

A s an example of t he importance of these i s s u e s , no te tha t it i s
p o s s i b l e t o cons t ruc t an A d a program tha t w i l l deadlock under one
legal task scheduling a lgo r i thm, but not under another legal task
schedul ing a lgor i thm.

Note t ha t a large amount of the opt imiza t ion and target
resource a l l o c a t i o n data can change as a r e s u l t of an appa ren t ly
small change i n the des ign . For example, the d e c l a r a t i o n of a
small data ob jec t can cause t he a l l o c a t i o n by the compiler of
s ta t ic data t o memory banks t o be s i g n i f i c a n t l y r e v i s e d , with
p o t e n t i a l l y important changes t o t iming . T h i s effect i s
p a r t i c u l a r l y pronounced i f a g l o b a l l y optimizing compiler i s
used.

NON-CATEGORICAL SPECIFICATIONS

A " c a t e g o r i c a l " s p e c i f i c a t i o n i s one which d e f i n e s only one
target system. O f cou r se , des ign s p e c i f i c a t i o n s are g e n e r a l l y
in tended t o be non-ca tegor ica l , t h a t i s , t o permit s u b s t a n t i a l
freedom i n their implementation.

The problem of non-categorical s p e c i f i c a t i o n s i s tha t i f t o o
much freedom of implementation remains, there can be a
combinatorial explosion in the number of cases requiring
examination i n order t o v e r i f y a requirement. For example,
cons ider a target machine tha t c o n s i s t s of 3 dissimilar
processors connected by communication channels . I f the program
c o n t a i n s 12 tasks, and i f t h e des ign does not c o n s t r a i n the

power (1?28) c o n f i g u r a t i o n s , each of which r e q u i r e s v e r i f i c a t i o n .
Each choice l e f t open by t h e des ign p o t e n t i a l l y m u l t i p l i e s t he
number of conf igu ra t ions tha t must be dealt w i t h i n v e r i f i c a t i o n .

I a l l o c a t i o n of tasks t o p rocesso r s , then there are 12 t o the t h i r d

NON-INVERTIBLE DATA DEPENDENCIES

The processing t i m e f o r some opera t ions depends on t h e input
cond i t ions t o t h o s e ope ra t ions (i . e . , i npu t data and r e t a i n e d
data). For example, the t i m e required by a track processing
ope ra t ion may depend on the number of c u r r e n t l y l i v e tracks. For
a given ope ra t ion , le t the func t ion that maps inpu t cond i t ions t o
process ing time of tha t ope ra t ion be called i t s data dependency
f u n c t i o n .

Data dependency f u n c t i o n s are o f t e n i n v e r t i b l e , a t least i n
the rough sense tha t the set of i npu t cond i t ions that r e s u l t i n
process ing times less t h a n some l i m i t can be determined. For
example, i t might be determined that the time necessary t o search
a track f i l e w i l l be less the 25 mil l i seconds i f there are no
more the 100 l i v e tracks t o be searched. T h i s s o r t of i nve r s ion
of the data dependency f u n c t i o n i s o f t e n s u f f i c i e n t t o v e r i f y
whether the ope ra t ion meets i t s performance requirements.

Unfortunately, data dependency func t ions are found in p r a c t i c e
that are not i n v e r t i b l e . That i s , there are opera t ions f o r which
t h e processing t i m e depends on t h e inpu t cond i t ions , but the

I

F.3.1.4

dependency is too complex to invert. Phrased otherwise, it is
impossible in practice to define the set of input conditions on
which the operation will complete within its prescribed time.

Examples of such non-invertible data dependencies can be found
in combinatorial algorithms, and in artificial intelligence
paradigms. Specifically, consider a backtracking algorithm --
depth first search for an optimum value using bounding functions.
It may happen that a long series of nodes will be generated and
expanded before it is discovered that this series does not lead
to an optimum, and must be discarded (the "garden path"
phenomenon). It is not in general possible to give a simple
condition defining those sets of input data that give rise to
this phenomenon. In such cases, it is impossible to discriminate
input conditions for which processing will be fast from input
conditions for which processing will be slow.

NON-DETERMINISTIC BEHAVIOR

Non-deterministic behavior of a program is behavior that
cannot be predicted from the input conditions. Non-determinism
can arise from the hardware level, as when two processors race
for access to a memory word, from the run-time software level, as
when the operating system takes varying times to respond to a
service request due to the varying activity of peripherals or to
the varying activity of other programs under its purview, and
from the software level, as from the Ada select statement and Ada
arithmetic, which are defined as (potentially) non-deterministic.

The property of being non-deterministic differs from being
non-categorical in that non-determinism may be a property of the
behavior of a single system, whereas only a specification can be
non-categorical. The property of being non-deterministic differs
from having a non-invertible data dependency function in that the
data dependency function of a non-deterministic process can only
be defined statistically, and that function may or may not be
invertible.

One example will s u f f i c e t o demonstrate the d i f f i c u l t i e s
presented by non-determinism to the verification process.
Consider a program that is deterministic except that the select
statement is implemented non-deterministically. That is, when
several rendezvous are possible, the choice of which to accept is
made at random. The state space of such a program branches each
time a select with two or more open accept branches is executed.
Therefore the number of distinct possible program behaviors can
grow rapidly with time, and it must be verified that all these
behaviors meet the requirements.

F.3.1.5

~~ ~

ADAPTIVE BEHAVIOR

Adaptive behavior refers to the aspects of a program's
behavior that change relatively slowly over time, for the purpose
of improving its performance. Examples of adaptive behaviors are
load balancing functions in distributed systems, and programs
that learn from experience.

Adaptive behavior can be implemented in a straightforward
manner, as by changing a vector of locations, and adaptive
behavior can be implemented by highly sophisticated means, as in
some learning programs that, in effect, modify the code that
performs some of their functions.

If the set of possible behaviors of an adaptive program is
reasonably small, then adaptation causes no great problems for
verification: each of the possible behaviors must be verified to
satisfy the requirements. If, on the other hand, the set of
possible behaviors is large, then verification may become
difficult or impossible.

METHODS FOR VERIFYING PKRFORMANCE REQUIREMENTS

Substantial work has been done in the area of dealing with
performance requirements. SREM [31 is a method of expressing
requirements, including performance requirements. SREM a l s o
provides a means to simulate the behavior of the specified
system. Unfortunately for our present purposes, the SREM
methodology is not well suited to producing Ada programs.

The Model system 141 generates programs (in PL/1) of a
restricted form from a specification expressed in an ad hoc
language. The system then estimates the performance of the
resulting system, using data generated as a by-product of the
program generation process together with inputs from the user on
the times of the target machine for "input, output, arithmetic,
comparison, and function operations."

Several methods support performance estimation based on
queueing theory. Examples are PAISLey [SI and SARA [63, and
Petri net approaches [" I . Such methods are effective when a
network of queues is an acceptable model of the execution
behavior of the software, and when statistical estimates of
timing (as opposed to guaranteed worst-case values) are
acceptable.

Note that none of the preceding techniques is intended to
solve exactly the problem addressed by this paper: validating
performance requirements on a detailed design expressed as Ada
code.

One popular non-method for dealing with performance
requirements needs to be noted. There is some feeling that any
concern for performance is improper, almost immoral, during
program design. This attitude will be called the DEMO
methodology (for DEliver Me from Optimizations). The DEMO

F.3.1.6

methodology cal ls f o r programs t o be designed e x c l u s i v e l y f o r
c o r r e c t n e s s , m o d i f i a b i l i t y , and m a i n t a i n a b i l i t y , and tha t
e f f i c i e n c y w i l l taken care of l a te r . The claim i s t h a t whatever
degree of e f f i c i e n c y i s called f o r can be provided,
au tomat i ca l ly , after the completion of detailed d e s i g n , by one of
three means:

* Compiler op t imiza t ions . "Any decent implementation"
of t he Ada language w i l l provided e x t e n s i v e , g l o b a l ,
op t imiza t ions , r e s u l t i n g i n a system tha t w i l l be as
e f f ic ien t as i f it had been optimized by hand.

* Recoding hot-spots i n t o low-level code. S ince most
of t he execut ion time i n many programs i s taken up by
a small propor t ion of t he l i n e s of code, t h o s e b locks
of code may be recoded i n t o assembly code, and good
e f f i c i e n c y thereby obtained a t small c o s t .

* Hardware. I f t he program does not run fast enough, a
faster computer should be used. It does not matter i f
no such computer i s a v a i l a b l e today , s i n c e i t w i l l be
a v a i l a b l e soon.

The DEMO a t t i t u d e probably developed i n response t o the o lde r ,
pre-software engineer ing a t t i t u d e that what makes sof tware good
was f i rs t , being e f f i c i e n t , followed c l o s e l y by meeting spec , and
a l l o t h e r va lues , such as m a i n t a i n a b i l i t y , were of i n s u f f i c i e n t
importance t o deserve mention. I f DEMO i s a r e a c t i o n t o t ha t
a t t i t u d e , i t i s l a r g e l y j u s t i f i e d , but neve r the l e s s it i s an
ove r reac t ion . Consider each of t he preceding three p o i n t s :

While ex tens ive , g l o b a l , op t imiza t ions are wi th in t h e s ta te of
the a r t , no A d a compiler known t o t h i s au thor provides t he
fac i l i t i es previous ly demanded of "decent implementations" o f t he
language. T h i s i s due t o two factors: the demand f o r reasonably
fast compilat ion, and t h e sepa ra t e compilation fac i l i t i es of t h e
language. The r e s u l t i s t h a t l o c a l l y , generated code i s not as
p a r t i c u l a r l y good, and g loba l op t imiza t ions are not performed a t
a l l . Hence w e cannot depend on compilers t o so lve our eff ic iency
problems today .

Recoding of hot-spots i n t o low-level code i s of course a
va luab le technique as far as it goes. It does not h e l p i n two
important cases: d i s t r i b u t e d i n e f f i c i e n c y , and hot assembly code.
The former refers t o i n e f f i c i e n c i e s tha t are widely spread
throughout a program; f o r example, a c u r r e n t l y popular Ada
compiler emits r e spec tab le code t o r e fe rence a r r a y s t h a t have an
index subtype such as 1..10, and h igh ly i n e f f i c i e n t code f o r
a r r a y s having the index subtype 0..9; no l o c a l i z e d recoding w i l l
h e l p . Hot assembly code refers t o t h e case i n which the
program's hot-spots are i n subrout ines tha t are a l ready i n
assembly code; i n p a r t i c u l a r , when the hot-spots are i n the
run-time support code. For example, a program that i s bound by
task suspension and d i s p a t c h times cannot be helped by recoding
i n t o low-level code.

F.3.1.7

The hardware s o l u t i o n depends on cos t - e f f ec t iveness . There i s
a balance between the c o s t of opt imizing sof tware , and
maintaining tha t optimized sof tware , a g a i n s t the c o s t of us ing of
a faster computers, t ak ing i n t o account weight , ' power, and
l o g i s t i c s i s s u e s . That balance cannot be c a s u a l l y t i p p e d i n
ei ther d i r e c t i o n , no matter how convenient i t would be f o r t h e
sof tware v a l i d a t i o n process .

The remainder of t h i s s e c t i o n concerns a proposed approach t o
so lv ing t h e problem def ined above.

The basis of t h i s approach i s a change i n viewpoint of t h e
meaning of a des ign . A design i s convent iona l ly considered t o
d e f i n e , roughly, an abstract computation (i . e . , a func t ion
mapping i n p u t s i n t o ou tpu t s) t oge the r w i t h a s t r u c t u r e for t h e
sof tware . Note that the meaning of " s t r u c t u r e of the sof tware"
i s not e n t i r e l y e v i d e n t : the s t r u c t u r e of the source code -- i t s
hierarchical decomposition of a program i n t o packages, tasks and
subprograms and t h e s e p a r a t e compilat ion s t r u c t u r e -- may be
q u i t e d i f f e r e n t from the s t r u c t u r e of the software a t run time.
For example, code of one subprogram may be consol idated i n t o the
code of many o thers by means of i n l i n i n g , and the program's
s ta t ic data may be d iv ided up a r b i t r a r i l y ac ross s e v e r a l
computers, and f u r t h e r i n t o r e s i d e n t and non-resident segments.
Convent ional ly , a "des ign" may spec i fy any o r a l l of these
sof tware s t r u c t u r e s .

For t he purposes of v e r i f y i n g performance requirements, l e t u s
adopt the fol lowing viewpoint on t h e meaning of "design" :

A DESIGN IS A CONSTRAIHT ON THE
INITIAL STATE OF THE TARGET MACHIHE

That is, of t he very large number of p o s s i b l e i n i t i a l states f o r
t h e target machine, a des ign selects a subse t of those states,
a l l of which presumably d e f i n e programs that w i l l perform
according t o t h e program's requirements. The word design w i l l be
used only i n t h i s sense below.

A des ign may be expressed as Ada code w i t h anno ta t ions , o r as
Ada code wi th a s e p a r a t e data s t r u c t u r e that c o n s t r a i n s t h e
mapping of the program onto the target machine. Examples of
data that may reasonably be included i n a design inc lude the
t y p e and c o n f i g u r a t i o n of t h e target computer processors ,
memories, and communication channels , the mapping of s ta t ic data
onto memories, the mapping of tasks (or task types) t o
p rocesso r s , and the i d e n t i f i c a t i o n of the run-time support code
and parameters (such as task scheduling a lgo r i thm) .

Even after the human des igne r s have expressed a l l t h e
informat ion t h e y have concerning the mapping of t h e program onto
t he target machine, a d d i t i o n a l information i s requi red from t h e
compiler concerning i t s mapping d e c i s i o n s . A form i n which t h i s
informat ion could be expressed w i l l be presented s h o r t l y . T h i s
information inc ludes data on the compi le r ' s choices of
op t imiza t ions , such as upmerging. i n l i n i n g , and code motion.

F.3.1.0

.

When all of the available information on the source code and
its mapping onto the target machine is available, then the
verification of performance requirements can proceed. The
essence of verifying performance requirements is to prove certain
statements about the program behavior correct. The statements to
be proven correct are the requirements ("The interval between
updates to each track shall be on the average at most two
seconds, and in no case longer than five seconds"), and the
hypotheses are the available rules about the program and its
mapping onto the target machine, together with some rules
defining the behavior of the target machine itself.

Since the verification of a requirement is likely to be a
long, but not particularly subtle, chain of reasoning, such
verifications are likely candidates for automation. For this to
be feasible, the data on the program will have to be expressed in
a form acceptable to a theorem-proving system, such as a Prolog
implementation [81 o r a rule-based system [91. For example, part
of one set of rules presented to the verifier, which expresses
the run-time structure of a subroutine, might have a semantic
content (but not a form) such as

1) Subroutine S117 is completed when Block249 is

2) Loop98 is completed when Boolean4276 is false.

completed and Loop98 is completed.

3) Block249 requires 79 milliseconds to complete.

4) Each iteration of Loop98 requires 182 milliseconds.

It is to be expected that attempts to verify requirements by
this method will initially fail, simply because the conclusion is
not justified by the available information. That is,
requirements will not be validated because there is not
sufficient data to establish that those requirements will be
satisfied by the final system.

When requirements cannot be validated due to the lack of
sufficient data, additional information must be made available.
Examples of such information would be a conclusion that is
justified by the available information but is too deep for the
verifier to discover (such as that some iterative process must
converge within a fixed number of iterations), o r information
that is added to the design in order to meet the performance
requirement (such as that when Condition equals Red, then the
availability of Processor Alpha to Program Zeta will be 10096.)
If such additional information does not permit the truth of the
requirement to be deduced, then that requirement must be reported
as not satisfied.

This is as it ought to be.

This rule-based verification approach has the following
strengths:

F.3.1.9

* Accuracy. If a requirement is verified by rule-based
verification, it is highly probable that any system
produced according to the design will satisfy the
requirement. Also, if a requirement is not verified
by this method, it is highly probable that some
system can be produced according to the design that
will not satisfy the requirement. The method is well
suited to handling worst-case requirements.

* Ability to handle non-determinism. In contrast to
simulation-based approaches, the rule-based
verification approach does not require that state
transitions be uniquely defined: a rule stating that
under certain conditions, either Process Alpha or
Process Beta will be dispatched is perfectly
accept able.

* Ability to accept non-categorical specifications. A
rule-based verification process is well suited to
handle non-categorical specifications.

* Ability to repeat a validation following a
modification. After a change to a design, such as
specifying pragma inline for a function, validation
may be repeated for only the cost of computer time.

This rule-based verification approach has the following
weaknesses:

* Required tool support. The major tool support
required to use rule-based verification is the
rule-based system processor, and the additional
function required of the Ada compiler (m. emission
of information on mapping decisions). Rule-based
system processors are commercially available, but the
modification to the Ada compiler is not trivial.

* Required human effort. Substantially more effort
than is traditionally expended will be required on
the part of the verifiers and the designers to
achieve verification under this approach.

* Inability to handle non-invertible data dependencies.
The use of a rule-based system will not solve the
problem of unpredictable processing time.

* Inability to handle adaptive behavior. The use of a
rule-based system will not solve the problem of
unpredictable processing.

F. 3.1.10

Today, it is impossible to verify performance requirements on
Ada software, except in a very approximate sense. There are
several reasons for this difficulty, of which the main reason is
the lack of use of information on the mapping of the program onto
the target machine.

An approach to a partial solution to the verification of
performance requirements on Ada software is here proposed, called
the rule-based verification approach. This approach is suitable
when the target machine is well-defined and when additional
effort and expense are justified in order to guarantee that the
performance requirements will be met by the final system.

REFERENCES

[ll B. W. Boehm, "Verifying and Validating Software Requirements
and Design Specifications," IEEE Software, pp. 75-88, Jan.
1984.

[21 P. Zave,"The operational versus the conventional approach to
software development," Communications of the ACM, pp.
104-118, Feb. 1984.

[31 M. W. Alford, "A requirements engineering methodology for
real-time processing requirements," IEEE Transactions on
Software Engineering, vol. SE-3, pp. 60-69, Jan. 1977.

[41 J. S. Tseng &., "Real-Time Software Life Cycle with the
Model System," IEEE Transactions on Software Engineering,
vol. SE-12, pp. 358-373, Feb. 1986.

[SI P. Zave, "An operational approach to requirements
specification for embedded systems," IEEE Transactions on
Software Engineering, vol. SE-8, pp. 250-269, May 1982.

[SI G. Estrin g& d., "SARA (System ARchitects Apprentice):
Modeling, Analysis, and Simulation Support for Design of
Concurrent Systems, I' IEEE Transactions on Software
Engineering, vol. SE-12, pp. 293-311, Feb. 1986.

[7] M. K. Molloy, "Discrete time stochastic Petri nets," IEEE
Transactions on Software Engineering, v o l SE-11, pp.
417-423, Apr. 1985.

[81 M. R. Genesereth and M. L. Ginsberg, "Logic Programming,"
Communications of the ACM, vol. 28, pp. 933-941, Sept. 1985.

[91 F. Hayes-Roth, "Rule-Based Systems," Communications of the
ACM, vOl. 28, pp. 921-932, Sept. 1985.

F.3.1.11

